Jedemo : The Environment of Event-driven Demonstration
for Java Toolkit

Motoki Miura
Master's Program in Science and Engineering
University of Tsukuba
1-1-1, Tennodai, Tsukuba
Ibaraki, 305-8573, JAPAN
+81298535165
miuramo @softlab.is.tsukuba.ac.jp

ABSTRACT

This paper describes an environment in which we can exe-
cute an event-driven demonstrations for Java applets. The
event-driven demonstration means to show the behavior of
an applet/application by re-executing the captured events. It
can be used for providing a help regarding how an applica-
tion works. Such an animated help is needed for Java applets,
which are carried out by a vast majority of web users.

Jedemo recorder captures the occurring events while the ap-
plet is running. Jedemo analyzer tries to label each command
and creates indices. The indices is used for editing and pro-
viding abstract of the demonstration. Then Jedemo player
re-executes the captured events with displaying the indices.

Jedemo systems suit to almost all applets. Developers can in-
tegrate applets with Jedemo player without any trouble. This
environment is helpful for both the developer of the applets
and the person who accesses the applets.

Keywords
animated-help, internet, World Wide Web, programming by
demonstration

INTRODUCTION

We can download and run a small program called “applet” on
the browser. Many developers want to publicize these applets
on their web-sites. For the user, it is necessary to know how
to operate the applet. Of course the developers know the
usage of the applets, but the task of writing explanation is
too much troublesome.

Though making help documents is important, it needs a lot
of time and effort. We think the major reason of the trou-
ble is caused by the expression gap between a “text” and a
“graphical object.”

Almost all applets are adopting a graphical user interface
(GUI). The GUI allows the user to try the system easily. But
the user can not always operate the system properly. The user
needs some instructions. Usually the instructions are pro-
vided in “textual” form. Using the textual expression, it is
difficult to specify the graphical objects: icons, menus, but-
tons and so on. The user should read the textual instructions

Jiro Tanaka

Institute of Information Sciences and Electronics

University of Tsukuba
1-1-1, Tennodai, Tsukuba
Ibaraki, 305-8573, JAPAN
+81298 535343
Jjiro@softlab.is.tsukuba.ac.jp

and should look for the corresponding object.

The developer may also think it boring to express each graph-
ical object as a plain text. This paper presents Jedemo which
enables the developer to reduce the trouble caused by con-
structing help documents.

RECORDING
Components

The developer of an applet uses the class packages such as
AWT (Abstract Window Toolkit) and JFC (Java Foundation
Classes) [8]. In either case, there are two types of classes:
a component and a container. The component receives user
inputs and issues corresponded events. The container can
add some components and layout them. The container can
also add the other container. The container has a list of com-
ponents. Referring the list, we can access each component.
The developer put together components and containers for
programming an applet/application. These components con-
stitute a tree structure (Fig. 2).

Event Propagation

If the user presses a button, the button issues an instance of
ActionEvent. The action-event includes a command name
and a source object. The command name is the label of the
pressed button. The source object links to the pressed button.

Usually, each component which can be a source object has
some event-listeners which respond to the events occurred in
the component. We achieve the event capturing by adding
some extra event-listeners. The extra event-listener includes
a facility to send the occurred events to the recorder. We have
prepared extra event-listeners corresponding to each type of
event-listener.

The recorder searches the component tree (Fig. 2) starting
from the root. Then the recorder checks the type of extra
event-listeners which can be added to the component. For
example, if the component's class is “Button” which has a
method addActionListener, the extra listener object added to
the component is the action-listener.

41 Applet Viewer: GraphApplet.class | - iJ

Applet

CLEARl

=
Applet started.

Figure 1: GraphApplet

Low-level Events

We have implemented a graph editor applet (Fig. 1) which
adopts direct manipulation interface. In the applet, dragging
is used for creating new child node, moving the node, create
a link, delete a link and delete the node. When we drag down
to the node, new child node is made with link. When we
drag up, the node is moved. Moving the node outside of
the applet means deleting it. ButtonPress in parent node and
ButtonRelease in child node creates a new link. To delete the
link, press on the child node and release on the parent node.

Although the direct manipulation such as dragging is an in-
tuitive operation, the handling of events is complicated. To
achieve direct manipulation, we have used low-level events
which are both MouseEvent and MouseMotionEvent. The
MouseEvent has following status: press, release, click, en-
ter and exit. The MouseMotionEvent has a status of move or
drag.

The low-level events in both clicking and dragging are started
with a mouse pressed event, followed by some mouse dragged

events when dragging, and ended with a mouse released event.

The mouse moved, mouse entered and mouse exited events
have almost no meaning. So we specify them as “separa-
tors.” The analyzer separates the lengthy mouse events by
the separator. We call each part of the separated events as a
command which has meaning.

Dynamic Component

In graph editor applet, each node has designed as “compo-
nent” (Fig. 2). The advantage of this design is that the event
handling of the node appearance becomes easy. But the node
is frequently created or deleted while editing. We have to
add each node to event-listeners to obtain occurred event
on the node. When new node is added to a certain con-
tainer, the container issues ContainerEvent which has a link
for the new node. The container-event also notifies if a node
is removed. The recorder makes each container register a
container-listener in advance. Utilize the container-listener,
the recorder can add event-listeners to the dynamic compo-
nent and update the components tree. This updating method
is utilized not only by the recorder but also by the player.

(

GraphPanel]

Crem) (

ScrollPane

] O Component

Graph Applet

) O Container

Figure 2: Component tree of the GraphApplet

Labeling

After all the occurred events are separated to some com-
mands, the analyzer tries to label each command and creates
indices. The indices is used for editing and providing ab-
stract of the demonstration. If the command is obvious, for
example action-command derives from action-event which
has command name, the analyzer can automatically add an
index like “[command-name] pressed” or “[command-name]
selected.” If the command-name is unknown, the recorder
must decide it from corresponding events. The recorder may
not know how the target system handles the event. For exam-
ple, the graph applet handles mouse events in complicated
manner. We give some rules which enable to identify the
command name. These rules are particular to the target ap-
plet. The analyzer analyzes mouse events and picks out some
attributes. The attributes are classname (pressed, released,
passed, generated, removed), coordinates (pressed, released)
and so on. The rule is written as a condition including the
attributes. If all the rules are satisfied, the command is la-
beled. The label interpolates some instance information. The
instance information is provided by method which returns
string or integer value. For example int getNodelD() method
which is defined in Node class, String toString() method which
is standard one for returning its own state. Once these rules
are created, the developer does not have to write indices for
each command.

PLAYING

Method

During the playing session, target system should be changed
both its state and view by the player as it is recorded. For
example “press CLEAR button” in the graph editor applet
performs cleaning action and denting the button.

To change both the state and the view, the player invokes a
proper method. Almost all events are subclass of AWTEvent.
Then they can be performed by dispatchEvent() method in
Component class. The dispatchEvent() delivers the provided
event to the appropriate method.

Source Component

Although the dispatchEvent method can process many types
of events, the player have to specify a source component be-
fore invoking. Each event has the source component as a

path name label

/ GraphApplet

/0 Panel

/1 ScrollPane

/0/0 Button CLEAR

/1/0 GraphPanel

/1/0/0 Node 0

/1/0/1 Node 1
Node 2

/1/0/2

Table 1: Component path of GraphApplet

“link.” The link points to an address. While the target applet
is running, the link is valid. But when it comes to play the
stored event, the link becomes invalid. Because the linked
source component will be loaded with another address.

To identify the link with the source component, the player
must track each component. Two tracking techniques are
considered: tracking by location and tracking by component
path. Tracking by location is a technique by matching the
event's coordinate with the object's location. Tracking by
component path uses component's tree structure.

If we utilize the tracking by location, a problem arizes when
the target applet is resized. The resize operation invokes re-
layouting. Therefore, re-layouting may move some compo-
nents. Then the source component tracking by location does
not work well.

The container has a component list which keeps its com-
ponents in adding order. Even if the target applet was re-
layouted, the order of the list is not changed. Therefore we
adopt tracking by component path. To realize this mecha-
nism, each event keeps a component path when it is recorded.
Table 1 shows a part of the component path of GraphApplet.
The player searches its own component tree which is gener-
ated as well as the recorder. Then each event is executed by
the component in the same way as recorded.

The system works well in almost all cases, however the stored
event may not send to correct component after changing the
structure of components. To prevent this, the player checks
the classname of target component before sending. If it dif-
fers from the recorded one, the player returns error dialog
and stops sending.

Pseudo Mouse Cursor

The demonstration should be displayed as well as someone
operates. To attain this purpose, a pseudo mouse cursor should
be shown. The pseudo mouse cursor moves and points cur-
rent attention during the demonstration. The coordinates of

the cursor is obtained by a series of mouse events. The recorder

captures all mouse events while in the recording session. The
player uses the coordinates unless the component position is
changed.

Typical Operation
(developer)

events
o
<
Watch the operation
(1) Record Events Target System

Store it as events
@O

Make
Demonstration

(2) Separate Events A
T @@ «© “press clear”
(3) Label for Commands ‘ Kcredtalnow]
V "move node"
indices

T 4
(4) Save them to Files .
oeuo

Play <:| Request
Demonstration (user)

$ Call methods

Target System

Figure 3: Flow of the help generation

(5) Play the events

IMPLEMENTATION

In Java environment, an applet runs under Java VM(Virtual
Machine). Though we can implement the manager as a cus-
tomized Java VM, it will not becomes popular among the
users.

We have implemented Jedemo (Java Event-driven DEMOn-
stration) manager which is one of the applet viewer running
as an applet. Using this framework, a developer can integrate
the target applet with the manager easily. In addition, a user
who needs the demonstration can see without any difficulty.
The steps to use the demonstration system are summarized
in Fig. 3.

Jedemo Recorder

Fig. 4 shows the ComponentTree tab folder. Pressing “add
Listener” inspects the target applet's component structure and
shows updated tree view in above. Fig. 5 shows the EventList
tab folder which enables developers to record events and to
check its contents. Fig. 6 shows the CommandList tab folder
which applies command production rules and checks gener-
ated commands.

The developer specifies GraphApplet.class as a target applet
in applet's parameter as follows. The recorder is executed by
appletviewer as a local applet.

<applet code="Recorder.class">
<param name="target" value="GraphApplet">
</applet>

The recorder loads the target applet by name and shows it.
The developer pushes “addListeners” button. The recorder
inspects the target applet's component tree and shows it. The
developer operates the target applet. Then the operation is
recorded as Fig. 5. After storing, the developer apply some
production rules for separating to commands and labeling

| EventRecorder IEE| | EventRecorder

0 E| EventRecorder

Component Tree | Event List [Command List |

Component Tree |Event List| Command List |

Component Tree | Event List [[Command List |

removeListeners
[GraphApplet

| clear |[@rvecord || s normal | session|

0-46 eate child of 10 =
47 —88 create child of 9

[add]

@ [Jcom.sun.javaswing.Panel

89 -123 move 11
124 — 170 create child of 9

[java.awt.Button
[java.awt.Button
[java.awt.Button
@ []java.awtScrollPane
® []DCanvas

[node

171 =220 action: Layout=1 (3) press
2 =2 (4) press

350 - 370 create child of 13
371 -401 create child of 13

[remove]

[} node
[} Node

wait70 [continue || clear || load || save |

[Node -

[¥] show

ez

Exit

] show

Figure 4: ComponentTree tab
folder

each one. The analyzer creates indices from command names.
Then the recorder saves both stored events and the indices to
a file named “demo1 . jdm.”

Jedemo Player
To publicize the target applet with the demonstration, write
an applet tag as follows.

<applet code="Player.class">
<param name="target" value="GraphApplet">
<param name="demofile" value="demol.jdm">
</applet>

Then the user sees the target applet which is added a help-
invoke button. If the user needs the demonstration, press the
button. The user can control the demonstration from Con-
troller. Of course the user can also operate the applet nor-
mally.

RELATED WORK

For the specific environment, many scripting tools are known.
In X environment, Bharat[2] argues how to perform a certain
script for X application. In Macintosh, AppleScript[1] gen-
erates a script which is executable and editable. AppleScript
does not correspond to all application running on Macintosh.
Jedemo systems are intended for general Java applets and ap-
plications.

There are many applications which record user's operation
and use it. The most popular usage for the operation is a
macro facility. Metamouse[5] and EAGER][3] have a facility
of generating macros from repetitive tasks. Chimera[4] rep-
resents macros like comic strip. For code generation, Peridot[6]
makes specification of direct manipulation interface from ex-
ample actions. Such programming by demonstration/example
systems are powerful for reducing the complicated opera-
tions, but they do not center the instruction use. Jedemo
player shows the demonstration as if someone operates.

As the system which has automatic generating help, Cartoonist[7]
generates an animated help from UI specification. We work
towards the generation of the help demonstration without any
specifications. Jedemo manager obtains target system's in-
formation from the executable class files only.

CONCLUSIONS
Jedemo recorder enables us to make the general applet's demon-
stration and store it as events. Jedemo player loads the events

Figure 5: EventList tab folder

Figure 6: CommandList tab
folder

and executes target applet with a pseudo mouse cursor. Both
Jedemo recorder and player run as an applet, which works
like an applet viewer. The developer can show the effective
demonstration that he wants to emphasize. The user can un-
derstand about the applet. This technique would benefit a lot
of people. In future, we plan to improve the interface through
which the user accesses the help contents.

REFERENCES
1. Apple Computer,Inc. Introduction to the Macintosh
Family — Second Edition.

2. Krishna Bharat, Piyawadee ”Noi” Sukaviriya, and Scott
Hudson. Synthesized Interaction on the X Window Sys-
tem. Technical report, Graphics and Usability Center,
Georgia Tech, USA, 1995.

3. Allen Cypher. Eager : Programming Repetitive Tasks
by Example. In CHI '91 Conference Proceedings, pages
33-39, May 1991.

4. David Kurlander and Steven Feinter. A History-Based
Macro By Example System. In Proceedings UIST '92,
pages 99-106, 1992.

5. David L. Maulsby, Ian H. Witten, and Kenneth A. Kit-
tlitz. Metamouse: Specifying Graphical Procedures by
Example. In Proceedings SIGGRAPH '89, pages 127-
136, 1989.

6. Brad A. Myers. Creating Dynamic Interaction Tech-
niques by Demonstration. In Proceedings CHI + GI'87,
pages 271-278, 1987.

7. Piyawadee “Noi” Sukaviriya and James D. Foley. Cou-
pling A UI Framework with Automatic Generation of
Context-Sensitive Animated Help. In Proceedings UIST
'90, pages 152-166, 1990.

8. Sun Microsystems Inc. Java foundation classes,
http://java.sun.com/products/jfc/.

